Indian Journal of PsychiatryIndian Journal of Psychiatry
Home | About us | Current Issue | Archives | Submission | Instructions | Subscribe | Advertise | Contact | Login 
    Users online: 47 Small font sizeDefault font sizeIncrease font size Print this article Email this article Bookmark this page
 


 

 
     
    Advanced search
 

 
 
     
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Email Alert *
    Add to My List *
* Registration required (free)  


    References

 Article Access Statistics
    Viewed1991    
    Printed158    
    Emailed1    
    PDF Downloaded194    
    Comments [Add]    
    Cited by others 1    

Recommend this journal

 


 
PSYCHIATRIC PEARLS Table of Contents   
Year : 2010  |  Volume : 52  |  Issue : 1  |  Page : 87-88
Arvid Carlsson, and the story of dopamine


1 Department of Psychiatry, Wayne State University, Detroit, MI, USA ; University of Alberta, Edmonton, Canada ; Acharya Nagarjuna University, AP, India,
2 Department of Psychiatry, Wayne State University, Detroit, MI, USA,
3 Department of Psychiatry, University of Alberta, Edmonton, Canada,

Click here for correspondence address and email

Date of Web Publication13-Jan-2010
 

How to cite this article:
Yeragani VK, Tancer M, Chokka P, Baker GB. Arvid Carlsson, and the story of dopamine. Indian J Psychiatry 2010;52:87-8

How to cite this URL:
Yeragani VK, Tancer M, Chokka P, Baker GB. Arvid Carlsson, and the story of dopamine. Indian J Psychiatry [serial online] 2010 [cited 2014 Sep 3];52:87-8. Available from: http://www.indianjpsychiatry.org/text.asp?2010/52/1/87/58907


Arvid Carlsson was born in Uppsala, Sweden in 1923. Dr. Carlsson, a pharmacologist, is best known for his contributions on the neurotransmitter, dopamine, for which he won the Nobel Prize in 2000 for Medicine/Physiology. The co-recipients were Dr. Eric Kendel and Dr. Paul Greengard.

Dr. Carlsson entered Medical School in 1941 and his education was interrupted by several years of service in the Swedish armed forces. In 1951, he finished the M.L. degree, now equivalent to M.D. in North America. Later, he became a Professor at the University of Lund. In 1959, he moved to Goteborg University.

In 1957, Dr. Carlsson showed that dopamine was a neurotransmitter in the brain and not just a precursor of norepinephrine. [1] This was the prevailing view at that time. He also developed an assay to measure dopamine in the brain and found that the highest regional concentration existed in the basal ganglia. This finding led to his experiments on reserpine, which depleted dopamine and produced a loss of movement control. These symptoms were similar to the clinical symptoms seen in the neurological illness,  Parkinsonism More Details. [2],[3] He did not end his investigations there, and showed that L-dopa, a precursor of dopamine, was effective treat symptoms of Parkinsonism. L-dopa is still one of the mainstays of drug treatment in Parkinsonism.

Dr. Carlsson was also instrumental in developing the 'dopamine theory of schizophrenia' [4],[5] and the role of dopamine in the development of extrapyramidal side-effects of antipsychotic medications. Inhibition of central dopamine function is a basic property common to many to antipsychotic drugs. The mesolimbic and nigrostriatal portions of the dopaminergic system are probably the main targets for the psychological and the extrapyramidal actions, respectively, of these drugs. The fact that dopaminergic hyperfunction induced by amphetamines or L-dopa may lead to a disturbance mimicking paranoid schizophrenia, further supporting the role of dopamine in mental function. Although a primary disturbance in dopamine function in schizophrenia cannot be ruled out, the intimate relationship between dopaminergic and other neuronal systems should be studied in more detail. The possible involvement of other amine, amino acid or peptide transmitters in schizophrenia cannot be disregarded. For example, there is now a large body of evidence supporting dysfunction of the glutamate receptors in schizophrenia.

Dr. Carlsson was also among the first researchers of the antidepressant compound, zimeldine, which was the first selective serotonin re-uptake inhibitor. The precursor of this drug was brompheniramine. Here, one should note that he did substantial work on the synthesis and metabolism of 5-hydroxytryptamine (serotonin) in the central nervous system. [6] However, zimeldine produced a serious neuro logical side-effect, Guillian-Barre syndrome, in a few patients and thus was withdrawn from the market. Thirteen cases of the Guillain-Barre syndrome were reviewed in an article in which the authors showed that all occurred with a similar relationship to treatment with zimeldine. The risk of developing Guillain-Barre syndrome was increased about 25-fold among patients receiving zimeldine, as compared with the natural incidence of the disorder. These cases substantiate strong evidence that Guillain-Barre syndrome may occur as a specific, probably immunologically mediated, complication of drug therapy. [7]

In the aging brain, there is a reduction of the levels of several transmitter substances and of the activities of enzymes involved in their synthesis and/or catabolism.[8] Carlsson stated that the sensitivity to the aging process varies for different transmitters and brain regions and that the dopamine neurons were more age-sensitive than most other neurons investigated by him. The metabolism of monoaminergic neurotransmitters is increased in the aging brain, as seen by increased metabolite/neurotransmitter ratios, and he suggested that this may compensate for the loss of the transmitter. In various types of dementia, including Alzheimer's disease (AD) and senile dementia of Alzheimer type (SDAT), there is a decrease in levels of several neurotransmitters as compared to age-matched controls. Recently observed changes in the lipid composition of the white matter, indicating demyelination, in the brains of patients with AD/SDAT, stress the importance of studying multifactorial aspects of dementia. Dr. Carlsson also emphasized that preventive measures may reduce the toxicity of oxygen and of autoxidation products in the brain. [9]

It is interesting to note that Dr. Carlsson opposed fluoridation of water as it is a violation of modern pharmacological principles, and he succeeded in his campaign along with hundreds of other scientists. It is also important to note that the incidence of dental caries was the same in Sweden as compared to fluoridated countries such as the USA. As British Columbia in Canada was considering fluoridation of water, Carlsson said, 'I would advise against fluoridation. He reiterated that individual prophylaxis (treatment) is preferable on principle grounds and that it is equally effective'. [10]

 
   References Top

1.Carlsson A. Thirty years of dopamine research. Adv Neurol 1993;60:1-10.  Back to cited text no. 1  [PUBMED]  [FULLTEXT]  
2.Carlsson A. Basic concepts underlying recent developments in the field of Parkinson′s disease. Contemp Neurol Series 1971;8:1-31.  Back to cited text no. 2      
3.Carlsson A. Speculations on the control of mental and motor functions by dopamine-modulated cortico-striato-thalamo-cortical feedback loops. Mount Sinai J Med 1988;55:6-10.  Back to cited text no. 3      
4.Carlsson A. Does dopamine play a role in schizophrenia? Psychol Med 1977;7:583-97.  Back to cited text no. 4  [PUBMED]  [FULLTEXT]  
5.Carlsson A. Antipsychotic drugs, neurotransmitters, and schizophrenia. Am J Psychiatry 1978;135:165-73.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]  
6.Carlsson A, Bedard P, Lindqvist M, Magnusson T. The influence of nerve-impulse flow on the synthesis and metabolism of 5-hydroxytryptamine in the central nervous system. Biochem Soc Symp 1972:17-32.  Back to cited text no. 6      
7.Fagius J, Osterman PO, Siden A, Wiholm BE. Guillain-Barre syndrome following zimelidine treatment. J Neurol Neurosurg Psychiatry 1985;48:65-9.  Back to cited text no. 7      
8.Carlsson A. Brain neurotransmitters in aging and dementia: Similar changes across diagnostic dementia groups. Gerontology 1987;33:159-67.  Back to cited text no. 8  [PUBMED]  [FULLTEXT]  
9.Carlsson A, Adolfsson R, Aquilonius SM, Gottfries CG, Oreland L, Svennerholm L, et al. Biogenic amines in human brain in normal aging, senile dementia, and chronic alcoholism. Adv Biochem Psychopharmacol 1980;23:295-304.  Back to cited text no. 9      
10.The Flouride Action Network. Available from: http://www.fluorideACTION.net. [accessed on 2009 Aug 12]  Back to cited text no. 10      

Top
Correspondence Address:
Vikram K Yeragani
No 92, Aasare, S-1, 2nd Floor, Margosa Road, 3rd Main, Malleswaram, Bangalore - 560 003, India

Login to access the Email id


DOI: 10.4103/0019-5545.58907

PMID: 20174530

Get Permissions




This article has been cited by
1 The Role of Dopamine in Schizophrenia from a Neurobiological and Evolutionary Perspective: Old Fashioned, but Still in Vogue
Ralf Brisch,Arthur Saniotis,Rainer Wolf,Hendrik Bielau,Hans-Gert Bernstein,Johann Steiner,Bernhard Bogerts,Anna Katharina Braun,Zbigniew Jankowski,Jaliya Kumaritlake,Maciej Henneberg,Tomasz Gos
Frontiers in Psychiatry. 2014; 5
[Pubmed]



 

Top