Indian Journal of PsychiatryIndian Journal of Psychiatry
Home | About us | Current Issue | Archives | Ahead of Print | Submission | Instructions | Subscribe | Advertise | Contact | Login 
    Users online: 8871 Small font sizeDefault font sizeIncrease font size Print this article Email this article Bookmark this page


    Advanced search

    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  

    Materials and Me...
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded261    
    Comments [Add]    
    Cited by others 20    

Recommend this journal


ORIGINAL ARTICLE Table of Contents   
Year : 2007  |  Volume : 49  |  Issue : 3  |  Page : 195-199
MRI T 2 relaxometry of brain regions and cognitive dysfunction following electroconvulsive therapy

1 Bradgate Mental Health Unit, Leicester, United Kingdom
2 Department of Neuroradiology and Imaging, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
3 Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India

Click here for correspondence address and email


Background: Although electroconvulsive therapy (ECT) causes no structural brain damage, recent studies reported altered brain perfusion acutely following ECT. This is in keeping with brain edema which was noted in animal experiments following electroconvulsive shock.
Aim: This study examined alteration in magnetic resonance imaging (MRI) T 2 relaxation time, a measure of brain edema, and its relation to therapeutic efficacy, orientation and memory impairment with ECT.
Materials and Methods: Fifteen drug-naive consenting patients of major depressive disorder with melancholia (DSM-IV) received ECT as first-line treatment. MRI scans were done before the first ECT and at 2 hours after the second ECT. T 2 relaxation time was measured bilaterally in thalamus, hippocampus, medial temporal lobes and dorsolateral frontal cortex by a blind rater.
Results: Depression scores and memory scores were reduced significantly both after the second and fifth ECT. There was no change in T 2 relaxation time after second ECT.
Conclusion: The finding suggests that ECT does not produce demonstrable change acutely in brain parenchyma detectable by MRI scans.

Keywords: Depression, electroconvulsive therapy, memory orientation, MRI

How to cite this article:
Kunigiri G, Jayakumar P N, Janakiramaiah N, Gangadhar B N. MRI T 2 relaxometry of brain regions and cognitive dysfunction following electroconvulsive therapy. Indian J Psychiatry 2007;49:195-9

How to cite this URL:
Kunigiri G, Jayakumar P N, Janakiramaiah N, Gangadhar B N. MRI T 2 relaxometry of brain regions and cognitive dysfunction following electroconvulsive therapy. Indian J Psychiatry [serial online] 2007 [cited 2022 Dec 2];49:195-9. Available from:

Electroconvulsive therapy (ECT) produces therapeutic response in major psychiatric illnesses, as well as adverse effects. Until recently, neuroimaging studies failed to show any long-term effects of ECT on brain structure. [1],[2],[3],[4],[5] Mandler et al. [6] and Scott et al. [7] showed an increase in magnetic resonance imaging (MRI) T 1 relaxation time (a measure of brain water content) acutely after ECT. In a pilot study by Diehl et al. , [8] MRI T 2 relaxation time increased within 2 hours after the second ECT and correlated with short-term memory impairment, though at trend level. However, their sample size was small ( n = 5) and they had examined only the effects of unilateral electrode placement. Their study did not examine hippocampus and dorsolateral frontal cortex, which are implicated in memory. We hypothesized that ECT produced increased brain edema (detectable by MRI T 2 relaxation time) acutely, and this increase correlated with disorientation and memory impairment following ECT.

   Materials and Methods Top


Fifteen (seven males) consecutive and consenting right-handed patients with major depressive episode with melancholic features [9] formed the sample. The severity of depression was rated twice weekly using the Hamilton Rating Scale for Depression (HRSD). [10] The mean (SD) HRSD at baseline was 26.6 (4.5). Thirteen (85%) were in their first episode. The mean (SD) duration of the current episode was 19 (15.6) weeks. The mean (SD) age of the sample was 31.6 (6.5) years (range = 24-46 years). None had ever received medications or ECT. All had seven years or more of formal education and scored 28 on mini-mental state examination. [11] Patients with mental retardation, medical/neurological disease known to affect cognitive functions or who qualified for alcohol and drug abuse/ dependence were excluded from the study.

Orientation and memory tests

The same clinician (GK) without the knowledge of ECT laterality conducted all assessments. Orientation was assessed using Orientation Battery Test (OBT) [12] and trail-making test (TMT Form-A). [13] Orientation was assessed at baseline (within 48 hours before first ECT) and after 20 minutes, 50 minutes, 2 hours and 8 hours following the second and fifth ECT sessions. Retrograde memory was assessed by verbal paired associates using the Wechsler Memory Scale. [14] At least six words out of ten pairs had to be recalled 24 hours after the learning session for inclusion in the study. Anterograde verbal memory was tested using verbal learning test and passage test. [13],[14],[15] In verbal learning test, a minimum of 8 out of 12 words had to be recalled after 15 minutes for inclusion in the study. Anterograde nonverbal memory was tested using Benton Visual Retention Test (BVRT). [16] Parallel forms were used at different occasions. Memory tests were performed within 48 hours of the first ECT and at 8 hours after the second and fifth ECT.

ECT procedure

ECT was administered three times a week under general anesthesia using thiopentone (3 mg/kg), succinylcholine (0.75 mg/kg) and atropine (0.65 mg). No patient received psychotropic medications during the course of ECT, except for two patients who required lorazepam 2 mg at bedtime. The treating psychiatrist chose ECT stimulus laterality. Ten patients received bilateral (BL) while five received right unilateral (UL) ECT. Threshold (T) was assessed at the first ECT session using titration method. The stimulus dose at subsequent sessions was modestly suprathreshold (T + 60 mC) in BLECT and moderately suprathreshold (2.5 x T) in ULECT. All had adequate seizures with single stimulus at second ECT session. Motor (cuff method) [17] and EEG (F 3 and F 4 channels referenced to ipsilateral mastoids) seizure durations were recorded at all ECT sessions. Four patients (two each from UL and BLECT groups) at the second ECT and none at the fifth ECT had prolonged seizures (EEG ≥ 120 seconds). Prolonged seizure was terminated by 5-10 mg intravenous diazepam. Two patients each had emergent delirium after the second ECT (both BLECT patients) and the fifth ECT (both ULECT patients). It was managed by thiopentone (50-75 mg) administered intravenously.

MRI studies

MRI of the brain was done within 48 hours preceding the first ECT and at 2 hours after the second ECT. 1.5-tesla superconducting system was used in all patients. A sagittal scout series (T 1 -weighted, 5-mm slice thickness and 2.0 mm interslice space) was performed to confirm consistent positioning. All patients underwent routine MRI evaluation including T 1 -weighted sagittal, proton density and T 2 coronal and Inversion Recovery protocols. Data for T 2 quantification was collected with dual echo-multiplanar (DEMP) sequences.

Regional T 2 values were determined using proprietary software. For each echo-time of both DEMP sequences, the signal intensity was recorded for a 20-mm 3 uniformly defined circular region of interest (ROI) placed within each selected brain region. A regional T 2 value for each DEMP sequence was then estimated by proprietary software inbuilt in the equipment. No effort was made to correct the values obtained with reference to background air or cranial vault. Mean T 2 values were used for analysis. MRI T 2 relaxation time was measured from each scan by an experienced neuroradiologist (JPN) who was unaware whether the particular scan was pre- or post-ECT scan and whether the patient received UL or BLECT.

The MRI T 2 relaxation times of five regions of interest (ROIs) were measured in both the cerebral hemispheres. The ROI included thalamus, hippocampus (HC), medial temporal lobe gray matter (MTLGM), medial temporal lobe white matter (MTLWM) and dorsolateral frontal cortex (DLFC) as they are implicated in memory. [13]

Thalamus was identified on the axial slice through the mid-level of the diencephalon medial to the posterior limb of internal capsule [Figure - 1]. The MTLGM and HC were sampled on the axial slice through the rostral midbrain containing the substantia nigra, cerebral aqueduct and superior colliculi [Figure - 2]. The MTLWM ROI was placed on the same axial slice in the white matter just lateral to the MTLGM. The DLFC measurements were taken at the gray matter of midfrontal gyrus on a transverse slice passing through the levels of frontal horns and the trigone [Figure - 1].

Statistical methods

Change in HRSD scores across the ECT course was tested using one-way RMANOVA. Changes in orientation scores across various recording points after ECT were measured using one-way RMANOVA separately at the second and fifth ECT sessions. Orientation scores at 20 minutes after the second and fifth ECT were compared using paired t-test. Impairment in memory test scores during the ECT course was tested using one-way RMANOVA.

As UL and BLECT patients did not differ with respect to MRI T 2 relaxation time before or after ECT, UL and BLECT patients have been analyzed together. Change in regional MRI T 2 relaxation time after ECT was tested using paired t-test. Significance (α) was set at P < 0.05.

   Results Top

Mean HRSD scores significantly dropped over the two-week assessment period [Table - 1]. Orientation scores dropped at 20 minutes following ECT and recovered over time in the next 2 hours at both the ECT sessions [Table - 1]. Orientation score was lower at 20 minutes after the fifth ECT than the corresponding score after the second ECT in the Orientation Battery Test ( t = 3.25, P < 0.01; [Table - 1]). Memory scores decreased in all the areas measured over the course of ECT with cumulative effect [Table - 2].

There was no significant change in MRI T 2 relaxation time with ECT in any of the ROIs studied 2 hours after second ECT [Table - 3]. Since there was no observed alteration in MRI T 2 relaxation time with ECT, no attempt was made to correlate this with therapeutic efficacy, orientation and memory scores.

   Discussion Top

ECT produces no lasting brain damage, although a few studies have shown evidence of brain edema immediately following ECT. [6],[7],[8] Our sample was homogenous and all patients were drug naive and nearly all (85%) had first episode of depression. ECT procedures followed contemporary standards (modified, brief pulse, EEG monitored). Parallel forms of short-term memory tests were used at different occasions. This minimized the bias of practice effect, and this study ensured blind design while rating or testing memory functions. Patients improved from depression with ECT. Disorientation occurred immediately after the second and fifth ECT sessions. As in earlier studies, disorientation was more pronounced after the fifth ECT, suggesting cumulative effects. [18],[19] There was significant memory impairment following ECT, as reported earlier. [19],[20],[21]

MRI scans done before ECT did not reveal any abnormality in the gray or white matter. Similarly Videbech et al [22] reported no structural abnormality of the brain in young depressives ( n = 42; mean age 42 years). MRI scan was done 2 hours after the second ECT. The second ECT session was chosen as it avoids multiple stimuli as in the first ECT session. Two-hour criterion was chosen based on previous reports, which have suggested that change in T 2 relaxation times was maximum approximately 2 hours after ECT. [6],[7] However, both the earlier studies had patients who were above 50 years. Some of the limitations of these studies included consideration of total brain area for measurement of T 1 and T 2 relaxation time and had used a lower MRI magnetic field strength (0.08 tesla). Patients were scanned immediately after ECT (within 15 minutes), and T 2 relaxation time changes are not expected to occur by then. In our study T 2 relaxation time was used to measure the water content in the brain tissue following ECT, as it is more sensitive than T 1. [23] While reading the MRI, the neuroradiologist was not aware of stimulus laterality and whether the scan was done before or after ECT. Examinations were made with 1.5 tesla MRI system, unlike in earlier studies. [6],[7]

The brain regions selected (thalamus, MTLGM and MTLWM) in both the hemispheres for this study were similar to those in the study by Diehl et al . [8] In addition, other regions of interest such as HC and DLFC were also studied, in view of their role in memory function. [13] There was no significant change in MRI T 2 relaxation time in any of the regions between pre- and post-ECT [Table - 3]. Change in T 2 relaxation time was also absent in the earlier study, which examined the whole brain. [7] Diehl et al. , [8] too, found no change in T 2 relaxation time in four of the six regions studied. The difference in their study, which was observed in two regions, was significant only with one-tailed t-test, suggesting a possible type-I error. When unilateral ECT patients alone were analyzed, there was no significant difference in T 2 relaxation time following second ECT. [24] Even the most sensitive techniques (3D high-resolution magnetic resonance imaging) failed to detect changes in the cerebral structure immediately after ECT. [5] It is possible that ECT did not produce any structural change in brain detectable on routine MRI examination, or increase in brain water content (edema) may not be of sufficient magnitude to be detected in MRI T 2 relaxation time after the second ECT.

Since there was no alteration in the T 2 relaxation time following ECT, no correlation with clinical effects was attempted. In a pilot study by Diehl et al. , [8] MRI T 2 relaxation time increased within 2 hours after the second ECT and correlated with short-term memory impairment, though at trend level. However, their sample size was small ( n = 5) and they had examined only the effects of unilateral electrode placement. It is known that BLECT produces greater memory impairment, and prolonged seizure may be more deleterious. However, T2 relaxation times did not change significantly in the 10 patients receiving even BLECT (mean T2 relaxation time of all ROIs; pre-ECT 119.3 ± 3.8 and post-ECT#2 117.7 ± 6.3; t = 1.04, P = 0.32). Nor was the change significant in the four patients who had prolonged seizures (mean T2 relaxation time of all ROIs; pre-ECT 118.3 ± 5.1 and post-ECT#2 117.3 ± 3.1; t = 0.34, P = 0.75). It is arguable that the change in T 2 values would occur with more ECTs as a cumulative effect. But this seems unlikely, as earlier studies failed to indicate the same. [6],[7]

The results are reassuring. ECT does not produce acute morphological changes in the brain detectable by routine MRI techniques. This probably suggests that the mechanism of memory impairment following ECT may not be detectable by the methods used in the current study for structural evaluation of the brain. Diffusion-weighted scan, a more sensitive MRI method for recognition of abnormal proton changes, may permit detection of ECT-induced brain edema.

In conclusion, ECT is effective in depression. As expected, it resulted in disorientation and memory impairment with cumulative effects. There was no demonstrable structural change in the brain identified by MRI T 2 relaxation time after second ECT. ECT-induced structural change, if any, may not be of sufficient magnitude to be detectable by routine MRI T 2 imaging protocols. More sensitive MR techniques may be recommended for future research.

   Acknowledgment Top

The authors thank Professor M. S. Keshavan, Western Psychiatric Institute, Pittsburgh; Professor G. Umamaheswara Rao, Department of Anesthesia, NIMHANS and Professor C. R. Mukundan, Department of Clinical Psychology, NIMHANS for helpful discussions.

   References Top

1.Coffey CE, Weiner RD, Djang WT, Figiel GS, Soady SA, Patterson LJ, et al . Brain anatomic effects of ECT: A prospective magnetic resonance imaging study. Arch Gen Psychiatry 1991;48:1013-21.  Back to cited text no. 1  [PUBMED]  
2.Devanand DP, Dwork AJ, Hutchinson ER, Bolwig TG, Sackeim HA. Does ECT alter brain structure? Am J Psychiatry 1994;151:957-70.  Back to cited text no. 2  [PUBMED]  
3.Frodl T, Meisenzahl EM, Moller HJ. Value of diagnostic evaluation of ECT. Nervenarzt 2004;75:227-33.  Back to cited text no. 3    
4.Jayakumar PN, Gangadhar BN, Sinha V. Computed tomographic study of morphological changes of the brain in patients with ECT induced seizures. Neurol India 1992;40:101-3.  Back to cited text no. 4    
5.Puri BK, Oatridge A, Saeed N, Ging JE, McKee HM, Lekh SK, et al . Does electroconvulsive therapy lead to changes in cerebral structure. Br J Psychiatry 1998;173:267.  Back to cited text no. 5    
6.Mander AJ, Whitfield A, Kean DM, Smith MA, Douglas RH, Kendell RE. Cerebral and brain stem changes after electroconvulsive therapy revealed by nuclear magnetic resonance imaging. Br J Psychiatry 1987;151:69-71.  Back to cited text no. 6  [PUBMED]  
7.Scott AIF, Douglas RHB, Whitfield A, Kendell RE. Time course of cerebral: Magnetic resonance changes after electroconvulsive therapy. Br J Psychiatry 1990;156:551-3.  Back to cited text no. 7    
8.Diehl DJ, Keshavan MS, Kanal E, Nebes RD, Nichols TE, Gillen JS. Post-ECT increases in MRI regional T 2 relaxation times and their relationship to cognitive side effects: A pilot study. Psychiatry Res 1994;54:177-84.  Back to cited text no. 8  [PUBMED]  
9.American Psychiatric Association (APA). Diagnostic and statistical manual of mental disorders. 4 th ed. APA: Washington, DC; 1994.  Back to cited text no. 9    
10.Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;23:56-62.  Back to cited text no. 10    
11.Folstein MF, Folstein SE, McHugh PR. "Mini-Mental State." A practical method for grading the cognitive scale of patients of the clinician. J Psychiatr Res 1975;12:189-98.  Back to cited text no. 11    
12.Ramachandra. Predictors of treatment related morbidity of electroconvulsive therapy. Thesis submitted for the award of Doctoral Philosophy (PhD) to NIMHANS, Bangalore, India; 1997.  Back to cited text no. 12    
13.Lezak. Neurophysiological assessment. 3 rd ed, Oxford University Press: New York; 1995.  Back to cited text no. 13    
14.Wechsler D. Wechsler memory scale-revised manual. The psychological Corporation: San Antonio, TX; 1987.  Back to cited text no. 14    
15.Pershad D, Wig. PGI memory scale. The construction and standardization of a clinical test of memory in simple Hindi. National Psychological Cooperation: Agra; 1977.  Back to cited text no. 15    
16.Benton AL, Levin HS, Van Allen MW. Geographic orientation in patients with unilateral cerebral disease. Neuropsychologica 1974;121:83-91.  Back to cited text no. 16    
17.Addersley DJ, Hamilton M. Use of succinylcholine in ECT. Br Med J 1953;1:195-7.  Back to cited text no. 17    
18.Sackeim HA, Portnoy S, Neeley P, Steif BL, Decina P, Malitz S. Cognitive consequences of low-dosage of electroconvulsive therapy. Ann N Y Acad Sci 1986;462:326-40.  Back to cited text no. 18    
19.Sackeim HA, Prudic J, Devanand DP, Kiersky JE, Fitzsimons L, Moody BJ, et al . Effects of stimulus intensity and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. N Engl J Med 1993;328:839-46.  Back to cited text no. 19    
20.Daniel WF, Weiner RD, Crovitz HF. Autobiographical amnesia with electroconvulsive therapy: an analysis of the roles of stimulus waveform, electrode placement, stimulus energy and seizure length. Biol Psychiatry 1983;18:121-6.  Back to cited text no. 20    
21.Weiner RD, Rogers HJ, Davidson JR, Squire LR. Effects of stimulus parameters on cognitive side effects. Ann N Y Acad Sci 1986;462:315-25.  Back to cited text no. 21    
22.Videbech P, Ravnkilde B, Fiirgaard B, Clemmensen K, Egander A, Rasmussen NA, et al . Structural brain abnormalities in unselected in-patients with major depression. Acta Psychiatr Scand 2001;103:282-6.  Back to cited text no. 22    
23.Bederson JB, Bartkowski HM, Moon K, Halks-Miller M, Nishimura MC, Brant-Zawadski M, et al . Nuclear magnetic resonance imaging and spectroscopy in experimental brain edema in a rat model. J Neurosurg 1986;64:795-802.  Back to cited text no. 23    
24.Girish K, Jayakumar PN, Murali N. ECT and T 2 relaxometry: A static water proton magnetic resonance imaging study. Indian J Psychiatry 2001;43:20-2.  Back to cited text no. 24    

Correspondence Address:
Girish Kunigiri
C/o. B. N. Gangadhar, 10, Type V Qts, NIMHANS, Bangalore - 560 029, Karnataka, India

Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0019-5545.37321

Rights and Permissions


  [Figure - 1], [Figure - 2]

  [Table - 1], [Table - 2], [Table - 3]

This article has been cited by
1 A Systematic Review on Cognitive Effects of Electroconvulsive Therapy in Asian Patients
Yining Ong, Lai Gwen Chan
Clinical Psychopharmacology and Neuroscience. 2022; 20(1): 1
[Pubmed] | [DOI]
2 What Can We Tell About the Effect of Electroconvulsive Therapy on the Human Hippocampus?
Akihiro Takamiya, Taishiro Kishimoto, Masaru Mimura
Clinical EEG and Neuroscience. 2021; : 1550059421
[Pubmed] | [DOI]
3 The Neurobiological Basis of Cognitive Side Effects of Electroconvulsive Therapy: A Systematic Review
Adriana Bassa, Teresa Sagués, Daniel Porta-Casteràs, Pilar Serra, Erika Martínez-Amorós, Diego J. Palao, Marta Cano, Narcís Cardoner
Brain Sciences. 2021; 11(10): 1273
[Pubmed] | [DOI]
4 The Neurobiological Effects of Electroconvulsive Therapy Studied Through Magnetic Resonance: What Have We Learned, and Where Do We Go?
Olga Therese Ousdal, Giulio E. Brancati, Ute Kessler, Vera Erchinger, Anders M. Dale, Christopher Abbott, Leif Oltedal
Biological Psychiatry. 2021;
[Pubmed] | [DOI]
5 Biophysical mechanisms of electroconvulsive therapy-induced volume expansion in the medial temporal lobe: A longitudinal in vivo human imaging study
Akihiro Takamiya, Filip Bouckaert, Maarten Laroy, Jeroen Blommaert, Ahmed Radwan, Ahmad Khatoun, Zhi-De Deng, Myles Mc Laughlin, Wim Van Paesschen, François-Laurent De Winter, Jan Van den Stock, Stefan Sunaert, Pascal Sienaert, Mathieu Vandenbulcke, Louise Emsell
Brain Stimulation. 2021; 14(4): 1038
[Pubmed] | [DOI]
6 Short and long-term effects of single and multiple sessions of electroconvulsive therapy on brain gray matter volumes
Giulio Emilio Brancati, Njål Brekke, Hauke Bartsch, Ole Johan Evjenth Sørhaug, Olga Therese Ousdal, Åsa Hammar, Peter Moritz Schuster, Ketil Joachim Oedegaard, Ute Kessler, Leif Oltedal
Brain Stimulation. 2021; 14(5): 1330
[Pubmed] | [DOI]
7 Do increases in deep grey matter volumes after electroconvulsive therapy persist in patients with major depression? A longitudinal MRI-study
Margit Jehna, Walter Wurm, Daniela Pinter, Katrin Vogel, Anna Holl, Peter Hofmann, Christoph Ebner, Stefan Ropele, Gottfried Fuchs, Hans-Peter Kapfhammer, Hannes Deutschmann, Christian Enzinger
Journal of Affective Disorders. 2021; 281: 908
[Pubmed] | [DOI]
8 Temporal trajectory of brain tissue property changes induced by electroconvulsive therapy
L. Gyger, C. Ramponi, J.F. Mall, K. Swierkosz-Lenart, D. Stoyanov, A. Lutti, A. von Gunten, F. Kherif, B. Draganski
NeuroImage. 2021; 232: 117895
[Pubmed] | [DOI]
9 A longitudinal study of the association between basal ganglia volumes and psychomotor symptoms in subjects with late life depression undergoing ECT
M. G. A. Van Cauwenberge, F. Bouckaert, K. Vansteelandt, C. Adamson, F. L. De Winter, P. Sienaert, J. Van den Stock, A. Dols, D. Rhebergen, M. L. Stek, L. Emsell, M. Vandenbulcke
Translational Psychiatry. 2021; 11(1)
[Pubmed] | [DOI]
10 ECT-induced cognitive side effects are associated with hippocampal enlargement
Miklos Argyelan, Todd Lencz, Simran Kang, Sana Ali, Paul J. Masi, Emily Moyett, Andrea Joanlanne, Philip Watson, Sohag Sanghani, Georgios Petrides, Anil K. Malhotra
Translational Psychiatry. 2021; 11(1)
[Pubmed] | [DOI]
11 P.408 Electroconvulsive therapy induces immediate changes in the extraneurite water compartment: a restriction spectrum imaging study
G.E. Brancati, O.T. Ousdal, N. Brekke, K.J. Ødegaard, U. Kessler, L. Oltedal
European Neuropsychopharmacology. 2020; 40: S234
[Pubmed] | [DOI]
12 Structural changes induced by electroconvulsive therapy are associated with clinical outcome
Peter C.R. Mulders, Alberto Llera, Christian F. Beckmann, Mathieu Vandenbulcke, Max Stek, Pascal Sienaert, Ronny Redlich, Georgios Petrides, Mardien Leoniek Oudega, Leif Oltedal, Ketil J. Oedegaard, Katherine L. Narr, Peter O. Magnusson, Ute Kessler, Anders Jorgensen, Randall Espinoza, Verena Enneking, Louise Emsell, Annemieke Dols, Udo Dannlowski, Tom G. Bolwig, Hauke Bartsch, Miklos Argyelan, Amit Anand, Christopher C. Abbott, Philip F.P. van Eijndhoven, Indira Tendolkar
Brain Stimulation. 2020; 13(3): 696
[Pubmed] | [DOI]
13 The impact of electroconvulsive therapy on brain grey matter volume: What does it mean?
Harold A. Sackeim
Brain Stimulation. 2020; 13(5): 1226
[Pubmed] | [DOI]
14 Inflammation, Hippocampal Volume, and Therapeutic Outcome following Electroconvulsive Therapy in Depressive Patients: A Pilot Study
Jan-Baptist Belge, Linda van Diermen, Bernard Sabbe, Paul Parizel, Manuel Morrens, Violette Coppens, Eric Constant, Philippe de Timary, Pascal Sienaert, Didier Schrijvers, Philip van Eijndhoven
Neuropsychobiology. 2020; 79(3): 222
[Pubmed] | [DOI]
15 The Global ECT-MRI Research Collaboration (GEMRIC): Establishing a multi-site investigation of the neural mechanisms underlying response to electroconvulsive therapy
Leif Oltedal, Hauke Bartsch, Ole Johan Evjenth Sørhaug, Ute Kessler, Christopher Abbott, Annemieke Dols, Max L Stek, Lars Ersland, Louise Emsell, Philip van Eijndhoven, Miklos Argyelan, Indira Tendolkar, Pia Nordanskog, Paul Hamilton, Martin Balslev Jorgensen, Iris E Sommer, Sophie M Heringa, Bogdan Draganski, Ronny Redlich, Udo Dannlowski, Harald Kugel, Filip Bouckaert, Pascal Sienaert, Amit Anand, Randall Espinoza, Katherine L Narr, Dominic Holland, Anders M Dale, Ketil J Oedegaard
NeuroImage: Clinical. 2017; 14: 422
[Pubmed] | [DOI]
16 Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression
P. Nordanskog,M. R. Larsson,E.-M. Larsson,A. Johanson
Acta Psychiatrica Scandinavica. 2013; : n/a
[Pubmed] | [DOI]
17 Initiatives in biological research in Indian psychiatry
Amresh Shrivatava
Indian Journal of Psychiatry. 2010; 52(7): 110
[Pubmed] | [DOI]
18 Cognitive psychiatry in India
PK Dalal, T Sivakumar
Indian Journal of Psychiatry. 2010; 52(7): 128
[Pubmed] | [DOI]
19 Biological investigations in Indian psychiatry
RishikeshV Behere, NarenP Rao, Ganesan Venkatasubramanian
Indian Journal of Psychiatry. 2010; 52(7): 136
[Pubmed] | [DOI]
20 Indian research on acute organic brain syndrome: Delirium
Charles Pinto
Indian Journal of Psychiatry. 2010; 52(7): 139
[Pubmed] | [DOI]